103 research outputs found

    On the Usefulness of Predicates

    Full text link
    Motivated by the pervasiveness of strong inapproximability results for Max-CSPs, we introduce a relaxed notion of an approximate solution of a Max-CSP. In this relaxed version, loosely speaking, the algorithm is allowed to replace the constraints of an instance by some other (possibly real-valued) constraints, and then only needs to satisfy as many of the new constraints as possible. To be more precise, we introduce the following notion of a predicate PP being \emph{useful} for a (real-valued) objective QQ: given an almost satisfiable Max-PP instance, there is an algorithm that beats a random assignment on the corresponding Max-QQ instance applied to the same sets of literals. The standard notion of a nontrivial approximation algorithm for a Max-CSP with predicate PP is exactly the same as saying that PP is useful for PP itself. We say that PP is useless if it is not useful for any QQ. This turns out to be equivalent to the following pseudo-randomness property: given an almost satisfiable instance of Max-PP it is hard to find an assignment such that the induced distribution on kk-bit strings defined by the instance is not essentially uniform. Under the Unique Games Conjecture, we give a complete and simple characterization of useful Max-CSPs defined by a predicate: such a Max-CSP is useless if and only if there is a pairwise independent distribution supported on the satisfying assignments of the predicate. It is natural to also consider the case when no negations are allowed in the CSP instance, and we derive a similar complete characterization (under the UGC) there as well. Finally, we also include some results and examples shedding additional light on the approximability of certain Max-CSPs

    On the Power of Many One-Bit Provers

    Full text link
    We study the class of languages, denoted by \MIP[k, 1-\epsilon, s], which have kk-prover games where each prover just sends a \emph{single} bit, with completeness 1ϵ1-\epsilon and soundness error ss. For the case that k=1k=1 (i.e., for the case of interactive proofs), Goldreich, Vadhan and Wigderson ({\em Computational Complexity'02}) demonstrate that \SZK exactly characterizes languages having 1-bit proof systems with"non-trivial" soundness (i.e., 1/2<s12ϵ1/2 < s \leq 1-2\epsilon). We demonstrate that for the case that k2k\geq 2, 1-bit kk-prover games exhibit a significantly richer structure: + (Folklore) When s12kϵs \leq \frac{1}{2^k} - \epsilon, \MIP[k, 1-\epsilon, s] = \BPP; + When 12k+ϵs<22kϵ\frac{1}{2^k} + \epsilon \leq s < \frac{2}{2^k}-\epsilon, \MIP[k, 1-\epsilon, s] = \SZK; + When s22k+ϵs \ge \frac{2}{2^k} + \epsilon, \AM \subseteq \MIP[k, 1-\epsilon, s]; + For s0.62k/2ks \le 0.62 k/2^k and sufficiently large kk, \MIP[k, 1-\epsilon, s] \subseteq \EXP; + For s2k/2ks \ge 2k/2^{k}, \MIP[k, 1, 1-\epsilon, s] = \NEXP. As such, 1-bit kk-prover games yield a natural "quantitative" approach to relating complexity classes such as \BPP,\SZK,\AM, \EXP, and \NEXP. We leave open the question of whether a more fine-grained hierarchy (between \AM and \NEXP) can be established for the case when s22k+ϵs \geq \frac{2}{2^k} + \epsilon

    Intermediate problems in modular circuits satisfiability

    Full text link
    In arXiv:1710.08163 a generalization of Boolean circuits to arbitrary finite algebras had been introduced and applied to sketch P versus NP-complete borderline for circuits satisfiability over algebras from congruence modular varieties. However the problem for nilpotent (which had not been shown to be NP-hard) but not supernilpotent algebras (which had been shown to be polynomial time) remained open. In this paper we provide a broad class of examples, lying in this grey area, and show that, under the Exponential Time Hypothesis and Strong Exponential Size Hypothesis (saying that Boolean circuits need exponentially many modular counting gates to produce boolean conjunctions of any arity), satisfiability over these algebras have intermediate complexity between Ω(2clogh1n)\Omega(2^{c\log^{h-1} n}) and O(2cloghn)O(2^{c\log^h n}), where hh measures how much a nilpotent algebra fails to be supernilpotent. We also sketch how these examples could be used as paradigms to fill the nilpotent versus supernilpotent gap in general. Our examples are striking in view of the natural strong connections between circuits satisfiability and Constraint Satisfaction Problem for which the dichotomy had been shown by Bulatov and Zhuk

    Circuit Bottom Fan-in and Computational Power

    Full text link

    Quantum algorithms for computing short discrete logarithms and factoring RSA integers

    Get PDF
    In this paper we generalize the quantum algorithm for computing short discrete logarithms previously introduced by Ekerå so as to allow for various tradeoffs between the number of times that the algorithm need be executed on the one hand, and the complexity of the algorithm and the requirements it imposes on the quantum computer on the other hand. Furthermore, we describe applications of algorithms for computing short discrete logarithms. In particular, we show how other important problems such as those of factoring RSA integers and of finding the order of groups under side information may be recast as short discrete logarithm problems. This immediately gives rise to an algorithm for factoring RSA integers that is less complex than Shor’s general factoring algorithm in the sense that it imposes smaller requirements on the quantum computer. In both our algorithm and Shor’s algorithm, the main hurdle is to compute a modular exponentiation in superposition. When factoring an n bit integer, the exponent is of length 2n bits in Shor’s algorithm, compared to slightly more than n/2 bits in our algorithm

    Circuit Bottom Fan-in and Computational Power

    Get PDF
    We investigate the relationship between circuit bottom fan-in and circuit size when circuit depth is xed. We show that in order to compute certain functions, a moderate reduction in circuit bottom fan-in will cause signi cant increase in circuit size. In particular, we prove that there are functions that are computable by circuits of linear size and depth k with bottom fan-in 2 but require exponential size for circuits of depth k with bottom fan-in 1. A general scheme is established to study the trade-o between circuit bottom fan-in and circuit size. Based on this scheme, we are able to prove, for example, that for any integer c, there are functions that are computable by circuits of linear size and depth k with bottom fan-in O(log n) but require exponential size for circuits of depth k with bottom fan-in c, and that for any constant&gt; 0, there are functions that are computable by circuits of linear size and depth k with bottom fan-in log n but require superpolynomial size for circuits of depth k with bottom fan-in O(log 1; n). A consequence of these results is that the three input read-modes of alternating Turing machines proposed in the literature are all distinct

    On the Size of Weights for Threshold Gates

    Full text link
    corecore